ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • Probability Theory - Part 10 - Random Variables
    Probability Theory 2022. 9. 21. 05:18

    0:19
    We just want to put all the relevant information of a random experiment into one object.
    0:25
    and usually, for such objects, we use capital letters. For example capital X.
    0:31
    Now soon we will see that this capital X is just a map defined on a sample space Omega with some special properties.
    0:39
    Indeed often here the codomain is simply given by the real number lin R.
    0:45
    However in a moment i will show you how we can naturally generalize this to another set of values.
    0:51
    and of course we will also discuss the properties we need for such a map.

     

    0:56
    But before we do this lets first discuss a simple example.
    1:01
    So what we could do is, as often, throwing 2 dice and maybe we have a red one and a green one.
    1:07
    Hence we can distinguish the dice, which means this is the same as throwing one die twice.
    1:14
    Therefore you should immediately be able to write down the probability space, because this is exactly what we discussed in the last video.
    1:22
    So the sample space Omega is the cartesian product of 1 to 6 with itself and the sigma-algebra A is just the power set.
    1:30
    and then without writing down the explicit definition, we can simply say, P is given by the uniform distribution.
    1:37
    Ok there you see, with this probability space we have the whole information of this random experiment.
    1:44
    So all the possible outcomes with the probabilities are given here(this probability space).

     


    1:49
    However, maybe we are in a situation where we are only interested in the sum of the two numbers the dice show.
    1:56
    For example, we could be in a game where this is important and the colours of the two dice don't matter at all.
    2:03
    Then exactly in such a case, we would define a random variable.
    2:08
    and as I told you before, we would simply call it X.

     

    2:12
    Ok, so here we have a map from the sample space Omega, which has all the possible outcomes of the 2 dice, to the real numbers.
    2:21
    So what X should do we already know. It should give us the sum of the 2 numbers.
    2:26
    Hence a sample given by (omega_1, omega_2) is mapped to the sum omega_1 + omega_2.
    2:34
    So you see, this is not a complicated map at all.
    2:38
    What we can remember in this case is that the input is a sample and the output is a number.
    2:44
    Ok, so this is a typical example of a random variable, where you see it simply extracts the information we are interested in.


    2:53
    Therefore later we will work with a lot of random variables.
    2:57
    However, first, I would say we have to give the correct definition now.
    3:02
    and as promised, this is the general definition one uses in probability theory.



    3:07
    Ok, so what we need are 2 spaces we call measurable spaces or event spaces.
    3:13
    The first one should be given by a set. A sample space Omega with a corresponding sigma algebra A
    3:20
    and then the second one is given by a set Omega tilde with a corresponding sigma algebra A tilde.
    3:26
    So you could say we have here probability spaces, where the probability measure P is not fixed yet.
    3:33
    Hence we are just interested in the events, the elements of a sigma algebra and therefore we talk of events spaces.
    3:40
    However, in measure theory, we would call these spaces measurable spaces
    3:46
    and in fact the random variable we define now, we would call a measurable map.
    3:51
    Nevertheless as often in probability theory, we use some special names for these objects.
    3:57
    Ok, now we consider a map we call capital X from one sample space Omega into the other one, Omega tilde
    4:05
    and then this map is called a random variable if it is a measurable map in the measure theoretical sense.

    4:12
    Which means we have to look at all the pre-images of the events in the second sample space, Omega tilde.

     


    4:18
    Here let's denote an element of curved A tilde, just with a normal A tilde.
    4:24
    and then we know, this pre-image of A tilde is the subset of Omega.
    4:29

    However, in the end, when we have a probability measure P, we want to measure these sets here.


    4:36
    Hence it's necessary that this is not just a subset of Omega, but also an element of the sigma-algebra A.
    4:43

    Therefore this is exactly the right condition we need here for all A tilde.


    4:49
    OK, there we have it. This is the whole definition of a random variable.
    4:54
    A concept we will need a lot.


    4:56
    Therefore I would say let's immediately look at some examples.
    5:00
    So maybe for the start lets discuss the details of the random variable from above.
    5:05
    There the first event space was given by (Omega, A).
    5:09
    Where Omega is the sample space given by 1 to 6, squared and A is just the power set.
    5:15
    Moreover the second event space was given by the real number line.
    5:20
    Hence this would be Omega tilde.
    5:24
    However, now we should ask: What is A tilde?
    5:28
    In the end, i can already tell you it will not matter at all,
    5:31
    but usually, when we have the real number line, we would take the Borel sigma-algebra.
    5:37
    Therefore we also do this here
    5:40
    and now I can ask you: is this map from before, this X, actually a random variable?
    5:47
    At first glance, it seems to be that we have to check a lot, because we need to check all the pre-images here.
    5:54
    However please recall that the sigma-algebra A here is the whole power set.
    5:59
    Hence the condition we have to satisfy just tells us that the pre-image of any Borel set A tilde is a subset of Omega.
    6:09
    Which is of course trivially fulfilled.
    6:12
    This means that the definition of X does not matter at all, when we have on the left-hand side the whole power set as the sigma-algebra.
    6:20
    So in this case, we can easily conclude that the map X is a random variable.

     


    6:25
    Indeed most of the time we won't have any problems at all fulfilling this condition here
    6:30
    or to put it in other words, counterexamples are always very artificial.
    6:35
    For example, you could take the same case again, but now we will change the power set here. So we take another sigma algebra A.
    6:44
    Hence instead of the largest one, the power set, we take the smallest one.
    6:49
    So the only events we have in our sigma algebra A are the empty set and Omega itself.
    6:55
    When of course we immediately find a counter-example. You just have to look at the pre-image of the singleton 2.
    7:01
    In words, this means the sum of the 2 numbers of the dice is exactly 2.
    7:07
    So there is only one dice throw possible. The 2 dice show both one.
    7:12
    Therefore this pre-image is just a set with only one element.
    7:17
    and that's the reason I chose 2 here, because then I don't have to write so much
    7:21
    and of course, you immediately see the result.
    7:24
    This set is neither the empty set nor the whole set Omega.
    7:29
    So it's not an element in the sigma-algebra A.
    7:32
    and then we can conclude, in this case, X is not a random variable.


    7:37
    Ok, now in summary what you should see here is: random variables are not complicated at all.
    7:43
    and indeed most of the time the fact that we have a random variable is immediately given.
    7:49
    Ok, now I want to close this video with an important notation.
    7:53
    Assume again, that we have 2 measurable spaces also called event spaces.
    7:59
    Moreover, let's also fix two other things.
    8:02
    First, we have a random variable X as before
    8:05
    and secondly maybe not so surprising, we have a probability measure P.
    8:09
    Defined on the first event space on the left.
    8:13
    This means when we take any set A tilde from the sigma-algebra A tilde
    8:18
    and look at the pre-image under X, then we can calculate the probability of this event.
    8:24
    Simply because we know by the definition of a random variable that this set lies in the sigma-algebra A.
    8:32

    Hence P of this set makes sense.

     

     

     


    8:35
    Therefore one usually uses a shorter, but strange notation for this.
    8:40
    One simply writes P of X in A tilde.
    8:45
    First it looks a little bit odd, but you will see this a lot in probability theory
    8:51
    and indeed it makes a little bit more sense when we use the definition of a pre-image.
    8:56
    Which is simply the set of all lower case omega in capital Omega
    9:01
    with the property that X of lower case omega lies in A tilde.
    9:06
    Hence you can see the left-hand side as a shortcut for writing this whole set.
    9:11
    The important thing you should remember here is that this literally does not make sense, but it stands for a whole set in Omega.
    9:19
    Please note in the same sense also other shortcuts as this are used as well.
    9:24
    In more detail, we will discuss this in the next video.
    9:28
    Therefore I hope I see there and have a nice day. Bye!

     

    'Probability Theory' 카테고리의 다른 글

    MIT  (0) 2022.12.14
    Indicator Random Variable  (0) 2022.09.22
    Probability Theory - Part 5 - Product Probability Spaces  (0) 2022.09.21

    댓글

Designed by Tistory.